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Abstract
The utility of social media for both collecting and disseminating information during nat-

ural disasters is increasingly recognised. The rapid nature of urban flooding from intense
rainfall means accurate surveying of peak depths and flood extents is rarely achievable,
hindering the validation of urban flood models. This paper presents a real-time modelling
framework to identify areas likely to have flooded using data obtained only through so-
cial media. Graphics processing unit (GPU) accelerated hydrodynamic modelling is used
to simulate flooding in a 48-km2 area of Newcastle upon Tyne, with results automatically
compared against flooding identified through social media, allowing inundation to be in-
ferred elsewhere in the city with increased detail and accuracy. Data from Twitter during
two 2012 flood events are used to test the framework, with the inundation results indicative
of good agreement against crowd-sourced and anecdotal data, even though the sample of
successfully geocoded Tweets was relatively small.
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1 Introduction

The United Kingdom was subjected to a series of intense storms throughout 2012, bringing
severe flooding and damage totalling millions of pounds. In some cases, lives were lost. Such
events are not unique to the UK, with a similar situation reported across Europe. The UK
Environment Agency has invested heavily in a monitoring network for major rivers, which are
used as data sources in real-time hydrodynamic models. Accurate real-time observations are
essential for forecasting and nowcasting during incidents, and to provide validation data for
model development. However, no formalised monitoring network presently exists for surface
water flooding (i.e. pluvial), which tends to be short-lived and result from convective storms
which are difficult to accurately forecast. Surface water flooding from intense rainfall poses
a risk to a substantial number of properties, estimated at 2.8 million (Pitt, 2008; Environment
Agency, 2009). At present, a system exists to issue alerts for potential extreme rainfall; however,
there is a recognised need to extrapolate from this data the specific areas at risk of flooding,
which are often highly localised, sometimes to the level of individual properties (Pitt, 2008;
Golding, 2009). Development of such warning systems is hampered by a lack of data, and the
varied nature of different rainfall events which might ultimately result in flooding.

Flood modelling at the city scale is rarely considered feasible. The complex nature of urban
environments is problematic, characterised by gradients, narrow gaps between buildings, cul-
verted watercourses, and drainage networks of varying quality and age. Steep slopes and narrow
gaps can induce supercritical flow conditions, resulting in such phenomena as hydraulic jumps,
and thus requiring shock-capturing but computationally intensive models if they are to be accu-
rately reproduced (Mignot et al., 2006). Allowing water to pass through the narrow gaps then
requires high grid resolutions, typically 2m or better (Schubert and Sanders, 2012), demanding
millions of grid cells. These two factors combined mean even for the relatively short duration
events typical for summer storms (i.e. 2 hours or less), model run-times are likely to be slower
by an order of magnitude or more than real time. Improved data collection and real-time mod-
elling of flood events allows emergency services and relevant authorities to make more-informed
decisions about where they direct their attention. In some instances the areas where explicit re-
ports of flooding are received are not those requiring the most urgent attention. Dissemination of
real-time flood extent data to the public allows them to make safer choices when selecting routes
for travel. Retrospectively, flood extent data has applications in determining the best location for
defences, drainage upgrades, and soft engineering strategies (i.e. warning systems, sandbags,
insurance, planning constraints).

Further development, validation and implementation of viable and accurate surface water
flood warning systems requires a step change in the volume of data collected during and after
flood events, and in the efficiency and capabilities of hydrodynamic modelling frameworks.
Clear evidence exists that social media is increasingly used as a tool for dissemination and
communication during times of crisis and natural disasters, such as during the 2011 Queensland
flood and Thai flood (Starbird et al., 2010; Vieweg et al., 2010; Kongthon et al., 2012; Murthy
and Longwell, 2012); the accuracy and validity of information provided by the public through
social media such as Twitter however may be questionable. A further complication is that only a
small portion (approximately 1.5% but increasing) of Tweets are precisely geotagged (Crampton
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Figure 1 Total number of Tweets (including some Retweets) identified about flooding within Tyne and
Wear, through hashtags such as #toonflood and #newcastleendofdays.

et al., 2013), which is crucial information for locating and evaluating the extent of flooding.
Comparison of locations geocoded from the text within Tweets against the actual location of the
user from geotags suggests even when Tweets are geotagged, this data can rarely be considered
reliable for inferring flooded locations (Leetaru et al., 2013). Clearly, an alternative approach is
required.

This paper makes a contribution to both understanding the geographic components of Twitter
data, and integration thereof with real-time flood modelling. We contribute to on-going discus-
sions regarding the possibilities and challenges of actively engaging with the public through
social media for hazard and risk management. The framework demonstrates that social media
provides an excellent source of data, and that its utility may be further enhanced when cou-
pled with efficient graphics processing unit (GPU) accelerated real-time high-resolution hydro-
dynamic modelling. Some limitations are also identified, insofar as capturing the spatial and
temporal variations in rainfall intensity, and correctly interpreting the meaning of social media
messages.

2 Recent flooding in Tyne and Wear

One of the most publicised floods in the UK during 2012 occurred in Tyne and Wear on 28th
June 2012, during a month where many parts of the country were battered by short-duration
heavy rainfall and thunderstorms over already saturated ground (JBA Risk Management and
Met Office, 2012). A supercell storm hit the city of Newcastle upon Tyne in North East Eng-
land and the surrounding area at approximately 15:00, only shortly before most people were
expecting to leave work. The effects of up to 50mm of rainfall over two hours were dramatic:
Newcastle Central Station was flooded and the surrounding railway lines flooded or damaged by
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landslides; underground stations on the areas light rail network were flooded; grade-separated
junctions connecting the city to all of the major arterial roads were flooded; and bus services
were suspended in some areas. Many people were stranded with no way to get home. More
than 300 properties were flooded internally, and damage to highways alone in the Newcastle
area was estimated at up to £8 million (Newcastle City Council, 2013). Rainfall intensity varied
greatly, both spatially and temporally across the city, but in some instances an intensity exceed-
ing 200mm/hr was recorded for a short duration (Environment Agency, 2012).

Large numbers of people took to social media to voice their concern, share photos, and find
the best way home. Retrospective analysis of Twitter on the day shows more than 1,800 Tweets
which could be linked to flooding in the area, helpfully identified by the hashtags #toonflood
and #newcastleendofdays. Local authorities and emergency responders both started and actively
engaged with these hashtags as a way of disseminating information to the public. A further
slightly smaller rainfall event occurred on 5th August 2012, in which 40mm of rainfall fell
within 90 minutes (Newcastle City Council, 2013). The Twitter activity for these two events is
represented in 1, whereby the timing of the August event on a Sunday is believed to be the main
reason for the relatively low number of Tweets.

As a further source of data, Newcastle University asked members of the public to help re-
construct the event through crowd-sourcing, following the success of a similar system following
fluvial inundation in nearby Morpeth on 6th September 2008. A simple website allowed photos
and text to be uploaded and positioned on a map. The system was publicised through local radio
and television, with members of the public encouraged to contribute. 194 submissions were
received, almost all including a photo, and the approximate time and location.

3 The modelling framework

The intention of this project is to assess the utility of social networking data and feasibility of
real-time high-resolution hydrodynamic modelling, neither of which have previously been ex-
plored. Application of 2D hydraulic models to real-time surface water flooding are not currently
applied within any operational system in the UK (Ghimire et al., 2013). No meteorological data
is used herein, and the authors are keen to stress that they do not suggest this is the most reliable
method for real-time flood inundation modelling. Accordingly, the data stream from Twitter
is used to identify when a storm event occurs, invoke hydrodynamic model runs in the correct
locations, and subsequently validate the quality of results.

The integrated modelling framework takes data from social media, presently only Twitter,
and stores messages which may potentially contain valuable data about flooding. These mes-
sages are then processed in order to identify criteria against which model runs can be assessed,
thereby finding a suitable hydrodynamic model of the flood event, and creating a simulation
which closely represents the reported inundation within the city. The results of these simula-
tions can then be fed back to the public and interested parties (e.g. local authorities, emergency
responders). Crowd-sourced information including photos and textual descriptions, provide a
basis through which future improvements may be made, and the existing system can be vali-
dated. The framework is visually represented in 2.

The framework consists of a Python-based middleware layer consisting of scripts designed

4



Smith LS et al. (2015)

Figure 2 Conceptual diagram of the integrated real-time modelling framework.

to run as services in the background of a server, mostly remaining idle until a potential flood-
causing storm event is identified. Data is stored in a PostgreSQL database with PostGIS exten-
sions.

3.1 Social media harvesting and analysis

The framework uses a single stream through the Twitter Streaming API, which receives mes-
sages filtered both on keywords and spatial extent. The API adopts a broad approach to filtering
messages, returning anything which matches any of the criteria; a second round of filtering is
therefore carried out before messages are committed to the database. Keywords are matched
against phrases or multiple criteria at this point, for example: a Tweet containing the word
”flood” with a geotag or bounding box which overlaps with Newcastle; or a Tweet which must

Figure 3 An example Tweet (hypothetical) with some of the typical terms that might be identified.
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match a keyword and a phrase such as flood and Newcastle upon Tyne.
Criteria are regarded as a conditions against which a model can be assessed, which herein

refers to either depth or velocity of flood water; in practice this means a minimum, maximum,
or range of values which can be satisfied by the model. For example, ’knee-deep’ in 3 could be
satisfied by a depth ranging from 0.3m to 0.8m, acknowledging that people are different heights
and the term is only an estimate of the depth.

In order to comply with the Twitter API terms of service, Tweets including their geoinfor-
mation are committed in their entirety to the database, and only held temporarily until they can
be analysed, the results of which are anonymous. The temporary storage allows a queue of
messages to build pending analysis, which in some instances may take a few seconds for each
message.

Analysis of messages focuses on two main areas: identification of terms with potential se-
mantic value for a flood event, and identification of distinct geographic areas. Terms of semantic
value are those which potentially indicate the intensity of rainfall, the occurrence of a major
storm, the presence of flooding, depth of flooding, or the velocity of flow. Fifty-five terms were
initially identified from inspection of messages during previous flood events; notable examples
include ’black skies’, ’thunder’, ’waist deep’, and ’closed’. 10,217 spatial entities were ex-
tracted from a mixture of data sources including Ordnance Survey vector mapping products,
OpenStreetMap, and the Royal Mail postcode address file. All of the data used except post-
code polygons are freely available in the UK, and no corrections or additions have been made.
Accordingly, a similar database could easily be created for any other British urban area. The
spatial entities include street names and a large number of building names, allowing messages
which refer to flooding in and around markets, parks and shopping centres to be recognised. A
hypothetical Tweet has typical terms of interest highlighted in 3.

Once a critical mass of Tweets referring to storm events or rainfall intensity is identified
within the database, a storm event is considered to be in progress and the start time assumed to be
the same as the first message. Five messages from different users within a fifteen minute period
is considered to constitute a ’critical mass’ herein; however, flood modelling cannot commence
until at least one message with a spatial extent and relevant semantic term is identified. A storm
event once identified is monitored for a period of four hours, after which it is likely there will
be intervention such as pumping in places of strategic importance, although this period can be
reconfigured to be longer. It is assumed the intense rainfall will last for no longer than an hour for
the purposes of simulations with a standardised event. We believe these numbers are appropriate
for the short duration heavy rainfall induced flooding which typically occurs in summer in the
UK; the framework is not suitable for use with groundwater or fluvial inundation events.

3.2 Real-time flood modelling

Airborne altimetric LiDAR data is used to represent the topography of the city for hydrodynamic
modelling. A digital elevation model (DEM) was created by the extraction and superposition of
walls and buildings from the raw LiDAR data to a post-processed terrain model resulting from
the same dataset. Both the raw and post-processed data is readily and commercially available
at low cost, and allows for a model of the city topography free of artefacts, without bridges and
trees, but including barriers to flow (e.g. walls). A grid resolution of 2m was selected to ensure
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Figure 4 Map showing the nine different models for Newcastle upon Tyne. Contains Ordnance Survey
data c© Crown copyright and database right 2013.

the timely completion of simulations, whilst still clearly representing the majority of smaller
flow pathways (i.e. gaps between buildings, alleyways, etc.).

Simulations are constrained to the area shown in 4, which excludes the more rural areas to
the north of the city. Analysis of the topography identified watersheds and allowed the city to
be split to form nine different models, all with transmissive boundary conditions but no flow
exchanged between them. Only the area under the remit of Newcastle City Council is modelled.
The areas covered by each model are also shown in 4.

The drainage network and associated sewers are not explicitly considered within the model,
owing partly to a lack of suitable data regarding the grates and gullies, and more crucially be-
cause its effects and quality of operation during an extreme rainfall are likely to be minimal.
Nevertheless in the event of small amounts of rainfall, this would be adequately removed by the
drainage network; accordingly, a very simple approximation is implemented, for losses at a rate
of 12.5mm/hr in all cells. This is approximately equal to the rainfall for a 2-hour duration 1 in 10
year event established using Flood Estimation Handbook (FEH) methodology (Faulkner, 1999);
however, actual performance will vary across the city according to design criteria, season and
related levels of maintenance. This 1 in 10-year flood frequency is consistent with the recom-
mendations for drainage design made in Table 2 of BS EN 752:2008, for which sewers should
not be expected to surcharge in areas of high risk (i.e. underground railways and underpasses),
and close to the 12mm/hr rate determined by the Environment Agency as a typical drainage re-
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Figure 5 An example of the complex and dangerous hydrodynamics which can occur in urban flooding,
showing water cascading at high speeds down steep steps in Newcastle upon Tyne.

moval rate, used in their own surface water flood risk mapping projects (Environment Agency,
2013).

A uniform Manning coefficient across the domain is assumed to be 0.045sm−1/3 to partially
compensate for street furniture which is neglected, and the mixture of surfaces which include
long grass and woodland, paving stones, and asphalt. Simulations are for a two-hour period,
whilst rainfall is applied uniformly across the domain for one hour. This allows the rainfall to
settle. The shape of the hyetograph for an actual event may of course be significant, perhaps
concentrating the heaviest rainfall within a 5-minute window, but it is not feasible (or in our
opinion possible without a large volume of data) to establish this from social media.

Evidence obtained from crowd-sourced images of the June flooding demonstrably confirmed
expectations that super-critical flow would be present in parts of the city, such as where flow
cascaded down steps, and hydraulic jumps forming on steep roads (e.g. 5). Reproduction of
these effects requires a shock-capturing model. Efficient and expedient simulation of a 48km2

area with almost 12 million cells for real-time flood simulation is beyond the capabilities of
most shock-capturing hydraulic models, which are extremely computationally intensive. These
numerical models solve the shallow water equations (SWEs) using a finite-volume approach
and explicit solutions to the Riemann problem at each cell boundary to create a Godunov-type
scheme. Consequently, the explicit models are constrained by the Courant-Friedrichs-Lewy
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Table 1 Run-times and descriptions for the different models used to simulate flooding in Newcastle upon
Tyne.

Model ID Model description Area (km2) Cell count Run-time
(hh:mm:ss)

1 Fenham 7.39 1,847,500 00:32:08
2 Elswick west 2.98 745,000 00:13:08
3 Elswick east 3.74 935,000 00:17:24
4 City centre 7.01 1,752,500 00:30:10
5 Ouseburn 9.29 2,322,500 00:43:56
6 Heaton 5.28 1,320,000 00:20:25
7 Walker 5.67 1,417,500 00:17:44
8 Gosforth 4.06 1,015,000 00:13:37
9 Westerhope 2.31 577,500 00:07:04

condition (Courant et al., 1967), which is a function of the largest velocity within the domain
and the cell dimensions; accordingly, if the cell resolution of these models is halved, the sim-
ulation run-time can be expected to increase by approximately eight times. The 2m resolution
selected herein nonetheless has limitations, such as the stairs shown in 5 which do not align with
the Cartesian grid and are not captured at this resolution; furthermore, this would in effect be
considered as a single steep slope within the model rather than individual steps, for which the
hydrodynamic behaviour is different.

Smith and Liang (2013) demonstrate that a significant speed-up can be achieved for shock-
capturing hydrodynamic simulations using modern GPUs designed for use in scientific comput-
ing. This work has been extended to allow for first-order simulations (Smith et al., 2015) and
domain decomposition across multiple GPU devices. The latter is not used herein as the domain
could readily be decomposed to independent models along ridges which do not require data ex-
changes. The full details of the finite-volume Godunov-type numerical scheme employed can be
found in the aforementioned references. Four NVIDIA Tesla M2075 GPUs are used to execute
simulations, with a simple database-driven system generating model configurations, monitor-
ing performance, queuing, and dispatching further runs required. Typical simulation run-times
are given in 1, although minor variations can be expected for different rainfall intensities and
Manning coefficients. Further experiments conducted confirm that using domain decomposition
rather than individual models, it is possible to reduce the runtime for all of the areas given in 1
within a single model to an hour, although this required considerable computing resources (eight
scientific-grade GPUs); with access to further resources these runtimes could be further reduced.
This technique is not applied herein as some parts of the city had very little social media activity
during the events, thus only a subset of models were required. Whilst it is possible to simu-
late the flooding at more than twice real-time speed, even these reduced runtimes would still be
a limiting factor in applications for forecasting. This paper therefore focuses on the utility of
social media for nowcasting and incident management.

Results from simulations are stored to raster files at 450 second intervals in the simulation.
These include the current depth, maximum depth recorded in a cell, and the velocity in the
x− and y− Cartesian directions. These result files are subsequently analysed to determine if a
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simulation is matching the criteria identified from social media. Each simulation runs only to the
next 450 second interval while the event is in progress, and only models where suitable criteria
were identified from social media are scheduled for execution; this means that even though
multiple model runs are required to find an appropriate match, these can often be achieved in
near real-time.

3.3 Flood model result analysis

Resultant raster files are analysed for each criterion identified using social media. These criteria
stipulate that the depth or velocity in a geographic area should either exceed a value or fall
within a defined range. A large number of messages identified referred to a spatial location by
describing a nearby landmark or intersection, such as a road being closed at the junction with
another, or flooding occurring near to a named shopping centre. Spatial entities are therefore
buffered to create an area to extract from the output raster files; the example in 6 shows a leisure
complex with a 75m buffer area around it, and the flooding referred to in numerous Tweets
can clearly be seen approximately 50 to 100m away. The size of the buffer is configurable.
The section of road missing from the buffered area in the figure also shows one of the minor
issues with the approach adopted, whereby some spatial features lie close to or on the boundary
between the nine different models; in such cases multiple result files must be consulted.

Each cell within the buffered area is used to generate a histogram for the variable under
consideration, an example of which is given in 7, where a typical shape is exhibited with the
majority of cells effectively dry. The larger depths are therefore of more interest in determin-
ing whether an area is flooded; however, taking the maximum value would potentially identify
exceptional cells that are a consequence of deficiencies or artefacts in the terrain model. For
the results presented herein, a range of 0.01 to 5.01m is used for depth histograms, and 0.01 to
1.01ms−1 for velocity, in both cases with 500 bins. The approach adopted uses the histogram
to obtain approximations (which are fairly accurate given the bin size) for the 70th and 95th
percentile values, and considers a criterion to be satisfied if there is an overlap between the crite-
rion and the range between these percentiles. The percentile range used is also configurable. In
the event that multiple criteria arise from a single Tweet, for example if the words flooded and
knee-deep were found, then only the most stringent criterion will be considered (i.e. knee-deep).

The modelling framework is designed to use known or suspected data about flooding in
one part of the city to infer areas elsewhere which might be flooded, as a consequence of the
same rainfall event. It is therefore not crucial that the framework correctly identifies the amount
of rainfall, especially given how spatially varied this could be, but instead identifies a single
simulation which best matches social media data. Identification of the best result set is therefore
taken to be the lowest amount of rainfall which satisfies the majority of criteria, where the
improvement achieved by adding a further 5mm of rainfall is less than 5% of the criteria. The
gradient of criteria satisfied against total rainfall volume is the key determinant. Whilst ideally
the number of criteria satisfied might be expected to eventually begin to decrease with excessive
amounts of rainfall, this is often not the case, as the majority of criteria only stipulate a minimum
depth (i.e. knowing somewhere has been closed or flooded, results in a criteria based only on
minimum depth).
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Figure 6 An example 75m buffered area used to check whether a model has satisfied a depth criterion
surrounding a leisure complex.

Figure 7 An example histogram produced from the depth in cells surrounding the feature in 6.
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4 Results and discussion

The integrated modelling framework was tested using retrospective data collected from Twitter
following the two major flood events in Newcastle upon Tyne during 2012, the smaller of the
two occurring on 5th August and the larger on 28th June. For the two events respectively, a total
of 186 and 1,834 Tweets were collected; however, only 168 and 1,243 of these were within four
hours of the framework identifying a potential event in progress.

The event on 28th June is believed to have spread 50mm of rainfall over some parts of the
city, with peak rainfall rates approaching 200mm/hr. Analysis of UK Met Office NIMROD
rainfall radar for the event suggests the average across the city was approximately 46mm. The
5th August event by contrast is thought to have totalled 30-40mm. The framework makes no
accommodation for spatial variations in rainfall rate, the varying intensity, and uses only a sim-
ple assumption for drainage losses. For simulations hereafter, 10mm and 80mm events were
completed in advance, providing a starting point for the framework to begin new model runs.

4.1 Geolocating Tweets and identifying criteria to assess models against

From the aforementioned Tweets with timestamps in the first four hours of each event, semanti-
cally relevant terms and spatial location names were matched. Those with both present, where
the semantic term infers implications for either a depth or velocity, are considered to be use-
ful. Only 43 such Tweets could be identified for 28th June, and 13 for 5th August, shown in
8. On 28th June, the first Tweet about the weather was made at 15:57, whilst the first Tweet
with enough detail to create a model criterion was at 16:12. On 5th August the first tweet was
at 13:44, but a whole hour later before a Tweet containing enough data for a model criterion,
which is a prohibitively long time in terms of incident management.

Manual inspection of Tweets will clearly identify further useful information; however, the
framework is intended to be completely automated; consequently, some instances where typing
errors were made or colloquial terms used to refer to areas resulted in no match. Implementation
of the Levenshtein algorithm, Soundex, or vernacular geographies for geocoding could assist
and may be explored in the future. Geotagged Tweets identified during both events were not
found to be of practical use; in some instances the geotag identified a location different to where
flooding was occurring, often in the case of Retweets.

The majority of the locations matched were major roads in the city, as a consequence of these
roads both being strategic routes affecting many people, and also the grade-separated junctions
collecting water and quickly flooding, as shown in 9. Sometimes buildings were identified as
flooding, which while useful information, the hydrodynamic model cannot reproduce flooding
within the building as they are assumed to be solid. The models are likely to correctly reproduce
internal flooding entering from the neighbouring streets through the depths in the buffered cells
around a feature, but could not identify flooding as a result of leaking roofs.

4.2 Correlation of models against criteria from social media and known data

Despite the low number of comparison criteria identified for the smaller 5th August event, a
good match is easily identified, with the number of criteria satisfied reaching a plateau at ap-
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Figure 8 Number of useful Tweets identified and how many of these could be used as criteria to assess
models against.

proximately 30mm of rainfall, which is close to the actual amount, as shown in 10. No crowd-
sourcing of photographic and textual data about the August event was undertaken, so there is
little data to use for further validation.

A greater volume of validation data is available for 28th June. The change in criteria satisfied
becomes less than 5% at 45mm of rainfall; however, as can be seen in 11 this is marginal, with
the next increase (from 50 to 55mm) seen to increase by slightly over 5%. This is not altogether
surprising: the framework makes no allowance for the temporally varying intensity of rainfall,
and it is known that on 28th June the heaviest rainfall was at the start of the event. Consequently,
flood depths for areas that have small catchment areas, and flood first, were underestimated at
least to begin with. The spatial variation in rainfall intensity is also difficult to assess, with only a
handful of reliable rain gauges in the city, and inaccuracies in rainfall radar (Wood et al., 2000).

Simulation results for 45mm to 60mm of rainfall all agree well with areas known to have
flooded. A small area of the city is shown in 12 with areas known to have flooded highlighted.
All of the circled areas except Debdon Gardens were identified as having flooded from Tweets,
which in many cases included photos. The depths are a good approximate match against these
photos. In the case of Debdon Gardens, crowd-sourced data from the public informed us that a
small area of the road had flooded, with the water travelling through back gardens and collecting
near the junction with Danby Gardens. Despite no social media data indicating the presence
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Figure 9 Location of buffered spatial entities matched from Tweets.

Figure 10 Percentage of model criteria from social media satisfied by different total rainfall amounts for
the 5th August event.
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Figure 11 Percentage of model criteria from social media satisfied by different total rainfall amounts for
the 28th June event.

Figure 12 Flood depth map for 45mm of rainfall in the Heaton area of Newcastle upon Tyne, where
circled areas correlate to areas known to have flooded from news reports and crowd-sourced
photographs. Contains Ordnance Survey data c© Crown copyright and database right 2013.
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of flooding here, the simulation clearly shows a small area of flooding, with final depth ap-
proximately 0.25m. This clearly suggests that the framework is able to use areas with known
flooding to automatically identify other areas likely to have flooded, in some cases at the level
of individual properties.

5 Conclusions

We have presented a framework for collecting and processing data about flooding in real-time
during a storm event, which is used directly to instigate and evaluate computer simulations and
extrapolate from the known extent to other areas likely to have flooded. The performance of
the simulations when compared to data obtained through crowd-sourcing and from elsewhere,
demonstrates that whilst the volume of rainfall cannot be determined exactly owing to other
unknowns (e.g. the efficacy of the drainage network), the extent and depth of flooding is re-
produced in most cases, even with small numbers of model criteria identified in social media.
It is important to note that only two events are considered herein, and there is no guarantee of
reproducibility, especially for areas with fewer social media users. With respect to the utility of
social media in flood risk management, the evidence from Newcastle upon Tyne suggests that

1. whilst there are data within Tweets regarding the location of flooding, indications of depth
are often absent, and the associated timestamp may not be representative of the observa-
tion;

2. initial activity on social media tends to focus on the intensity of the weather, whilst useful
activity detailing areas explicitly affected can sometimes come much later;

3. a considerable number of useful data identified was distributed by local authorities, emer-
gency responders, and other public sector organisations, based on reports from the public
made by other means and CCTV cameras; and

4. photographs have value for retrospective analysis of an event, but social media sites gen-
erally strip embedded data including the date and time of capture, hence other means of
collecting photographs which preserve this information may be required.

Potential avenues for improving the framework have been identified, primarily focusing on
improved interpretation of Tweets and matching ambiguous terms. The framework is clearly
better suited to incident management applications than forecasting, but provides a basis through
which the public can be informed of the best routes for travelling, and local authorities can
identify the areas requiring the most immediate attention.
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