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Abstract

A new High-Performance Integrated hydrodynamic Modelling System (Hi-PIMS) is
tested for urban flood simulation. The software solves the two-dimensional shallow wa-
ter equations (SWEs) using a first-order accurate Godunov-type shock-capturing scheme
incorporated with the Harten, Lax and van Leer approximate Riemann solver with the con-
tact wave restored (HLLC) for flux evaluation. The benefits of modern graphics processing
units (GPUs) are explored to accelerate large-scale high-resolution simulations. In order
to test its performance, the tool is applied to predict flood inundation due to rainfall and
a point source surface flow in Glasgow, Scotland, and a hypothetical inundation event at
different spatial resolutions in Thamesmead, England caused by embankment failure. Nu-
merical experiments demonstrate potential benefits for high-resolution modelling of urban
flood inundation, and a much-improved level of performance without compromising result
quality.
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1 Introduction

The past year of 2012 has seen the UK and numerous regions around the world subjected to
an unusually wet summer, causing severe flash flooding. In July, August and September, many
places in the UK, including Wales, Cornwall, Devon, North Somerset, North and West York-
shire, Newcastle and the Scottish Borders, suffered flash flooding that caused substantial damage
to property and major disruption to transport networks. Outside of the UK, a devastating flood
killed 144 people in the Krasnodar region of Russia in July; Beijing in China, Uttarakhard in
India and Manilla in the Phillipines have also been struck since. Most commonly associated with
torrential rainfall, these flash floods are characterised by a sudden rise in river and subsequent
floodplain inundation, and high-velocity overland flow following a rapid catchment response to
the intense rainfall. Numerous processes related to the catchment response including bore for-
mation (so-called *walls of water’) remain poorly understood but numerical modelling provides
a means through which these events may be reproduced. Reliable simulation of these violent and
unpredictable natural events demands a shock-capturing hydrodynamic model, generally beyond
the capabilities of hydrological and simplified hydraulic modelling. However, the high compu-
tational burden associated with full hydrodynamic models has restricted their wider application
to small spatial extents and short duration events. Most of the existing shock-capturing hydro-
dynamic models are not able to provide efficient and high-resolution simulations for large-scale
flash flood events. Particularly, most of the aforementioned flash floods occur in urban areas,
where high-resolution simulation is essential in order to resolve the complex urban topographic
features consisting of buildings, streets and embankments in order to provide reliable numeri-
cal predictions. This poses a great challenge to existing two-dimensional hydrodynamic flood
modelling tools, which are generally computationally demanding. This work therefore presents
a new High-Performance Integrated hydrodynamic Modelling System (Hi-PIMS) for efficient
high-resolution urban flood modelling.

Considerable research effort has been directed towards acceleration of flood modelling in
order to achieve higher spatial resolutions and greater extents. Much of this literature focusses
on simplification of the underlying equations to create kinematic- or diffusive-wave approxi-
mations. However, most of these simplified models are not appropriate to depict the complex
catchment responses hypothesised whilst providing accurate depths and velocities, and their
reduced physical complexity may cause increased sensitivity to and dependence on parame-
terisation (Costabile et al.l 2009, 2012; [Fewtrell et al., 20115 [Yeh et al.l [2011). Furthermore,
there is evidence to suggest these simplified approaches will not achieve significant and consis-
tent reductions in computation time, albeit case and resolution dependent (Hunter et al., 2008;
Néelz and Pender;, 2010; |Wang et al., 2011)). In order to improve computational efficiency of the
diffusion-wave models for high-resolution simulations, Bates et al.| (2010) presented a new for-
mula for estimating inter-cell discharges for this type of models by partially restoring the inertial
terms from the fully dynamic momentum equation. The numerical stability of the resulting par-
tial inertial model is now controlled by the much less restricted Courant-Freidrichs—Lewy (CFL)
condition, identical to the explicit hydrodynamic models. Due to the use of simplified governing
equations and a simpler numerical scheme, the partial inertial model is shown to save 20% -
30% of the computational cost by comparison with a shock-capturing hydrodynamic model that
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solves the full two-dimensional shallow water equations in the similar code base (Zhang et al.,
2014). However, for a city-scale high-resolution flood simulation that covers millions of compu-
tational nodes, the partial inertial models are still computationally too demanding. Furthermore,
Neal et al.[(2012)), after comparing the performance of their diffusion-wave, partial inertial and
shock-capturing dynamic wave models against a set of benchmark test cases, pointed out that
while the simplified models may reproduce numerical results comparable to a full model they
are unable to simulate supercritical flows accurately. However, urban flash flood events as a
result of intense rainfall or failure of flood defences are generally characterised as rapidly vary-
ing trans-critical and supercritical flows. Therefore, the shock-capturing fully dynamic models,
representing the most recent developments in simulating complex shallow flow hydrodynam-
ics, appear to be a natural option for urban flash flood modelling as considered in this work,
although they are still inadequate in representing certain small-scale three-dimensional flow fea-
tures (Soares-Frazao et al., 2008 |Guinot, 2012)).

By creating a refined mesh only in those areas of interests, dynamic grid adaption provides an
effective means to relax the high computational burden inherent in the full dynamic inundation
models. While retaining the robustness and complexity of the numerical approach, dynamic grid
adaptation however presents new problems if mass conservation is to be achieved. It is unlikely
to increase the timestep for cases where the highest level of refinement is concentrated on the
most complex flow dynamics and highest velocities or free-surface gradients (see descriptions
of refinement criteria in|Liang et al., [2008}; |Kubatko et al., 2009).

Rather than creating high-resolution mesh to directly capture small-scale topographic or flow
features as used in the adaptive mesh methods, different sub-grid parameterization techniques
have also been proposed to integrate high-resolution topographic features into flood models to
enable more accurate and efficient coarse-resolution simulations (e.g.|Soares-Frazao et al., 2008;
Guinot, [2012; [Schubert and Sanders|, [2012; |Chen et al., [2012). Most of these models are essen-
tially based on rigorous reformulation of full dynamic shallow water equations to effectively re-
produce complex urban topography (e.g. Soares-Frazao et al., 2008 |Guinot, 2012;|Schubert and
Sanders| 2012). Soares-Frazao et al.| (2008) introduced a new shallow flow model with porosity
to account for the reduction in storage due to sub-grid topographic features. The performance of
the porosity model was compared with that of a refined mesh model explicitly reflecting sub-grid
scale urban structures and a more classical approach of raising local bed roughness. While able
to reproduce the mean characteristics of the urban flood waves at a much lower computational
cost than the refined mesh simulations, the porosity model was unable to accurately predict the
formulation and propagation of certain localised wave features, e.g. reflected bores. In another
study, |Schubert and Sanders| (2012) investigated various approaches of representing sub-grid
topographic features in simulating a dam-break flood in an urban area and concluded that only
those methods taking into account of building geometries can capture building-scale variabil-
ity in the velocity field. They also indicated the benefit of using high-resolution simulation to
explicitly represent buildings and road structures if run-time execution costs were not a major
concern (see also Gallegos et al., [2009). The issue of high-computational cost may be resolved
by exploring recent developments in computational hardware.

If software developers are to keep pace with the increasing power of hardware, they must
accept and respond to the stagnation of Central Processing Unit (CPU) clock speeds and look to
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parallel processing to fully harness computing power. Despite this the majority of commercial
hydraulic modelling software can only utilise a single CPU core. Parallel programming ap-
proaches are shown to exhibit good weak and strong scaling when software is structured appro-
priately (e.g. Neal et al., 2010; Saetra and Brodtkorb, |2012). But there is a far more interesting
potential for looking beyond the CPU and examining the role heterogeneous computing might
play. Graphics Processing Units (GPUs) are designed to process large volumes of data by per-
forming the same calculation numerous times, typically on vectors and matrices. Such hardware
architectures are well-suited to the field of computational fluid dynamics. New programming
languages including CUDA and OpenCL have exposed this hardware for use in general-purpose
applications (GPGPU). A number of attempts have been made to explore the benefits of GPU
computing for highly efficient large-scale flood simulations. Early pioneers of such methods in-
clude Crossley et al.| (2009) who harnessed graphics APIs directly to implement a diffusion wave
model (JFlow) for GPUs, Kalyanapu et al.|(2011) with a finite-difference implementation of the
full shallow water equations, and later(Brodtkorb et al.|(2012]) with a finite-volume scheme. Such
software is becoming increasingly mainstream; Néelz and Pender|(2013)) report results from sev-
eral commercial GPU hydraulics implementations while [Smith and Liang| (2013 demonstrate
the potential for generalised approaches applicable to both CPU and GPU co-processors. The
most recent research also explores how domain decomposition across multiple GPUs can pro-
vide further performance benefits (Saetra and Brodtkorb) [2012).

This work aims to present a high-performance hydrodynamic model for simulating differ-
ent types of urban inundation processes including those induced flash floods, which generally
involves rapidly-varying transcritical flows that should be reliably resolved by a robust shock-
capturing shallow water model. The new computational power provided by recent developments
in GPU computing is explored by adopting the model framework as introduced in |Smith and
Liang| (2013)), which solves the 2D shallow water equations using a 2nd-order accurate shock-
capturing finite-volume Godunov-type scheme. The model can take advantage of either CPUs
or GPUs with a single codebase by leveraging OpenCL. To further improve the computational
efficiency of the modelling framework, a 1st-order accurate scheme is implemented, due to
the fact that a 2nd-order accurate numerical scheme may not always be superior in real-world
applications (Zhang et al., 2013)). Extra source and sink terms are also included in the new im-
plementation to better describe the urban rainfall-runoff processes. With Hi-PIMS, the focus of
this work is to demonstrate that high-resolution large-scale urban inundation modelling can be
realised at an affordable computational cost. Application to a standard benchmark test in Glas-
gow and a hypothetical case at Thamesmead reaffirms its efficiency and suitability. Results are
presented for different vendors’ devices.

2 Finite-volume Godunov-type shallow flow solver

In the general case for a flood event, the water depth is much smaller than the horizontal di-
mensions of the water body. Therefore the hydrodynamics of the flood wave can be suitably
described by the shallow water equations (SWESs) that are derived to take full account of mass
and momentum conservation in a two-dimensional manner. In matrix form, the SWEs may be
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written as

ou of oOg
—+—+—==5, 1
ot 0x 0Oy M

where ¢ is the time, x and y the Cartesian coordinates, g the vector representing the flow
variables, f and g the fluxes in the two Cartesian directions, and s is the source term vector. The
vector terms are given by |Liang and Borthwick| (2009),

1 dx
q=1 qgx |- f= uqg, + g(nZ _ 2772]7)/2 i
| 9y » ugy
[ (2)
O qs
g = Vg x s S = _Tﬁfx _ %
| Vgy t g(m? — 2nzp) /2 _ _%y _ 877%%

Herein, n and z;, denote water level and bed elevation above datum and therefore 7 = — 7,
calculates the water depth; u and v are the two depth-averaged velocity components; g.(= uh)
and gy(= vh) are the x— and y—directional unit-width discharges; g is the gravitational accelera-
tion; g, includes source and sink terms as a result of rainfall and loss through drainage systems,
etc.; p is the water density; —0z,/6x and —6z;, /0y define the two bed slopes; 75, and 7, are bed
friction stresses calculated by

Tpx = pCruNu? +v? and Ty = pCpv Vu? +12, 3)

where Cy = gn?/h'3 is the bed roughness coefficient with n known to be the Manning
coeflicient.

In order to better capture complex flow hydrodynamics including hydraulic jump-like flow
discontinuities, the above SWEs are numerically solved using a finite-volume Godunov-type
scheme, which updates flow variables to the next time step using the following time-marching
formula

f; i — I i g -8 i
k+1 k i+1/2,j i-1/2,j i,j+1/2 i,j—1/2
qi,;f =q;; - At( Ax + Ay —S; j) , “4)

where k represents the time level; i and j indicate the cell indices; A¢, Ax and Ay are the time
step, cell size in the x— and y—directions, respectively. In order to update the flow variables to a
new time step, the four flux vectors (fi+1/2.j, fi—1/2,)» 8i.j+1/2- &i,j—1/2) and the source term vector
(s;,7) must be properly calculated.

In the context of a Godunov-type scheme, the interface fluxes are evaluated by solving local
Riemann problems, e.g. fr = F(qé, qlg), that are defined by the left and right Riemann states

qé and qlg. In order to obtain the Riemann states, the values of flow variables must first be
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reconstructed on both sides of the cell interface under consideration. A first-order accurate
scheme assumes piecewise distribution of the flow information and therefore the face values are
essentially the same as those at the cell centres. Taking the eastern cell interface of cell (i, j) as
an example, the left face values of the flow variables and bed elevation are simply

qlé =q;, and Z,fE = Zpic- ®))

Subsequently, the associated face values of water depth and velocity components are given
by

k= ik -2, ik = (GoL/hk,  and 7E = (qy)E/hE. (6)

The face values on the right-hand-side of the cell interface can be obtained in a similar way,
which is actually equal to those at the centre of cell (i + 1, j). Based on these face values, the
Riemann states are derived after defining a single value of bed elevation across the cell interface,
ie.

pE = max (ZéE,ZfE). (7
The corresponding Riemann states are therefore reconstructed as
hy = max (0,7 = Zhy), nf = hp+ e, (@)f = @OFRE, and (q))f = GEhE. (8)

Similarly, the Riemann states can be obtained at the right hand side of the cell interface.

In the current formulation of SWE:s as given in[I|and[2] the water level instead of water depth
is used as a flow variable. In a dry cell, the reconstructed water level is actually the ground level.
If the ground level (i.e. the reconstructed 'water level’) is higher than the actual water level,
spurious fluxes will be calculated which in turn breaks the so-called well-balanced property of
the governing equations. Therefore, the difference between the actual and fake water levels must
be identified and subtracted from the reconstructed bed elevation and water level (Liang, 2010).
Again taking the eastern interface of cell (i, j) as an example, the level difference can be easily
calculated by

Az = max (0,255 — 7%). ©)

which is then used to modified the reconstructed bed elevation and water level as follows

WE < E — AZ, My — g — Az, and nh —nf — Az (10)
These reconstructed Riemann states are then employed by the Harten, Lax and van Leer ap-
proximate Riemann solver (HLLC) with the contact wave restored (Toro et al.,|1994) to compute
the interface fluxes.
The bed slope source terms are directly approximated by a central differencing approach.
For example, in the x-direction,

(11)

o 0% _ ~(ZbE_ZbW)
8T 5x Ax ’
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Figure 1 Flowchart of the software processes indicating which components are OpenCL kernels or API
calls.

where 7] = (né + n’é)z. For the friction source terms, a splitting-limited-implicit scheme
adopted by|Liang|(2010) is implemented to ensure better numerical stability. This gives a robust
finite-volume Godunov-type solver for simulating shallow flows over complex domain topogra-
phy with wetting and drying. As demonstrated by |Liang|(2010), the numerical scheme preserves
the well-balanced solution of a lake at rest and ensures non-negative water depth.

The present first-order accurate finite-volume Godunov-type scheme is overall explicit and
its numerical stability is restricted by the Courant—Friedrichs—Lewy (CFL) criterion. Simple
transmissive and reflective (slip) boundary conditions are used in the test cases considered in
this work (Liang, 2010).

3 GPU-accelerated framework

The framework used herein adopts a perhaps unusual approach and more details can be found in
Smith and Liang| (2013). Code responsible for applying the finite-volume scheme is generated
at least in part dynamically, then compiled by the underlying operating system drivers using an
appropriate instruction set and optimisations for the hardware available. This is accomplished
through the Application Programming Interface (API) functionality made available through the
OpenCL standard. Relevant constants such as the cell dimensions of the domain are hence
embedded in the assembly instructions themselves, and functionality which is not required or
disabled (e.g. friction, atmospheric boundary conditions) can be removed altogether. Dynamic
type definitions also allow the same codebase to be used with single- (32-bit) or double-precision
(64-bit) floating-point computation.

Moving data from the main system memory (RAM) to a GPU device is an expensive opera-
tion (see recommendations in/Advanced Micro Devices Incl[2011;[NVIDIA Corporation, [2009).
Cell data is only moved periodically for output files, and the numerical scheme is otherwise per-
mitted to run in a loop for approximately one second before a small amount of data is transferred
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Figure 2 Representation of a two-stage reduction process with a global stride of six (stride in reality
would be much larger) performing a series of binary comparisons to create a smaller array of potential
values.

to update the user on the progress of the simulation. This process is represented in[I] No vendor-
specific optimisations were made, as the authors’ intentions were to create a system appropriate
for use with any of the mainstream vendors’ hardware, most notably NVIDIA, AMD and Intel.
The compiler is instructed to adhere to all of the appropriate IEEE standards for floating-point
arithmetic (i.e. accurate square root operations, treatment of denormals, etc.).

A regular Cartesian grid is used to represent the domain, whereby transient state variables
are stored in a four-element vector and constant values (bed elevation and friction coefficients)
require two further elements. This means 48 bytes or less are required per cell. Considering
further constraints imposed on the size of a single memory allocation, the software is presently
limited to 50 million cells for current hardware offering up to 6GB of memory.

A two-stage reduction process (2)) is used to identify the largest permissible timestep within
the domain: cells are sampled with a regular stride and recursive binary comparisons used to
provide a single value which is carried forward to a much smaller array. This is examined in
the second stage when incrementing the overall simulation time. The reduction process ensures
processors perform sufficient work to mask the considerable latency introduced by transferring
data from a GPU’s globally-accessible memory to compute unit-specific registers. A variety of
raster formats are supported for importing and exporting domain data, initial conditions, and
periodic output.

4 Results and discussion

The aforementioned software has been applied to inundation simulations in Glasgow and Thames-
mead, both in the United Kingdom. The first represents a standard test-case to allow comparison
with commercially-available hydraulic modelling packages. The latter represents a much larger-
scale test that would be burdensomely slow without GPU acceleration. The Courant number
is 0.5 for both cases. Both cases are simulated using an Intel Xeon E5-2609 CPU device (In-
tel Corporation, 2012)), AMD FirePro V7800 GPU (Advanced Micro Devices Incl 2010), and
NVIDIA Tesla M2075 GPU (NVIDIA Corporation, 2011)).
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Figure 3 (a) Uniformly distributed rainfall hyetograph; (b) volumetric discharge at the inflow point.
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Figure 4 The surface elevation for a 0.39 km? area of Glasgow with the inflow location indicated and
the position of 9 output sample points.

4.1 Glasgow

The UK Environment Agency commissions a report periodically examining the differences in
results, suitability and performance of different 2D hydraulic modelling packages. One of the
more complex test-cases therein is a short hypothetical flood event occurring as a combination of
both a point inflow and uniform precipitation in the area surrounding Cockenzie Street, Glasgow.
The test was performed in accordance with [Néelz and Pender| (2010) and Néelz and Pender]
(2013)), simulating a 5-hour period.

The inflow hydrograph and hyetograph are given in[3] The digital terrain model (DTM) is
shown in [ alongside the location of the point inflow at (264896, 664747). Data was supplied
at 0.5m resolution but has been resampled to 2m to allow comparison with published results for
other software. The computational domain contains 97,083 cells. A uniform Manning coefficient
of 0.05 is used everywhere except for roads and pavements where a value of 0.02 is assigned.
Closed boundary conditions are applied around the extremity of the domain.
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Figure 5 Maximum water levels observed per cell after 5 hours, shown at 0.2m intervals.

Simulations were carried out using 32- and 64-bit floating-point arithmetic (i.e. single- and
double-precision). 32-bit arithmetic introduced significant errors in mass conservation for the
given numerical scheme and resulted in timesteps of approximately 0.1s. This is believed to be
caused by the lack of numerical resolution for the small depths by which unit-width discharge is
divided to give velocities. The typical timestep with 64-bit arithmetic is approximately 0.3s. This
difference largely negates the performance benefits that are normally achievable with reduced
precision arithmetic for both GPUs and CPUs, and furthermore has implications for any other
simulations in which extremely shallow flows might be expected. Results presented hereafter
are for 64-bit simulations except where indicated.

The maximum depths recorded per cell at the end of the simulation are displayed in [5] at
0.2m intervals. In addition water levels and velocities were output at 9 different points; levels
are shown in[6|while velocities are omitted for brevity. The maximum depths and timeseries data
are consistent with results produced by other software, and close to those of other finite-volume
software packages in particular. Small differences are discernible but all fall within the ranges
of results presented in|Néelz and Pender (2010).

The simulation correctly represents the double-peaked nature of the event from intense rain-
fall and subsequent surcharging of a sewer, with the second peak at point 7 shortly after the
surcharging peaked at 38 minutes. The results are generally free of oscillations, except for some
small oscillations at point 9 which may be unphysical. At point 2 there is some discrepancy
among models as to when the water levels settle after both peaks have passed; the results pre-
sented herein suggest this occurs after approximately 120 minutes, which is consistent with the
results for the comparable numerical scheme employed in TUFLOW FV. At point 3 the second
peak begins at approximately 50 minutes, which is consistent with almost all of the software in
Néelz and Pender|(2013). At point 6 the second peak is predicted to occur at around 27.05 mAD,
which is higher than many of the other software but there is significant variation across software
at this point, ranging from 26.95 to 27.08 mAD. The final flood depths correspond to the areas
which were predicted by the majority of software tested in [Néelz and Pender| (2013); clearly
a shock-capturing scheme is not necessary to accurately predict the final extent, but can have
a marked effect on the progression of the flood wave, localised flow dynamics and arrival tim-

10
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Figure 6 Changes in recorded water levels above datum recorded at 9 different sample points in the
domain. The location of the sample points is given in Ef}

ing, all of which could be significant factors in assessing flood risk and crucial in issuing flood
warnings. It cannot be asserted as to which software is most accurate as the event and inflow
data is hypothetical, however the software herein captures the same behaviour as comparable
finite-volume codes solving the full shallow water equations. Small differences in the methods
for solving the equations and implementation of boundary conditions can result in significant
differences: treatment of wet-dry fronts, frequency of mass addition for precipitation, rounding
or smoothing in the consideration of topography, and mechanism for considering the Manning
coeflicient are believed to be most significant in this instance.

The run-times for the simulation using three different processing devices are presented in

Table 1 Simulation run-times for Glasgow in minutes using three different processing devices.

Floating-point CPU Intel Xeon GPU AMD FirePro ~ GPU NVIDIA Tesla
arithmetic resolution  E5-2609 V7800 M2075

32-bit 9.05 247 1.98

64-bit 9.45 2.67 2.88

11
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[Il It is important to note however that the domain for this test-case is too small to fully ex-
ploit the weak scaling in GPUs. Nonetheless the times represent a significant reduction on those
in Néelz and Pender| (2010) and |[Hunter et al.| (2008]), with both CPU and GPU computation,
despite the use of an explicit numerical scheme and Godunov-type scheme. Compared to fig-
ures reported for the same test in [Néelz and Pender| (2013), the software presented herein is
slightly slower than some comparable GPU software (e.g. 1.40 minutes for TUFLOW GPU),
which may in part be a result of using OpenCL parallelisation, where there is some evidence
to suggest memory transfers and dispatch overheads could be slightly higher than CUDA (e.g.
Karimi et al.,|2010). The performance results cannot be directly compared however as different
hardware was used for each software. Moreover, the CUDA and OpenCL APIs have subtle but
important differences between implementations, such as the non-standard blocking behaviour of
clEnqueueNDRangeKernel in NVIDIA’s implementation of OpenCL. Comparison is also dif-
ficult as diffusion approximation codes can be expected to exhibit poor computational efficiency
at 2m resolution because of a more severe timestep constraint.

4.2 Thamesmead

The Thamesmead district of South London is located downstream of London’s main flood de-
fence, the Thames Barrier. The area is low lying but was heavily developed in the 1960s. Flood
risk is posed by storm surges or a failure in the defence wall, with the area previously inun-
dated in the North Sea Surge of 1953. A hypothetical breach in the defences is considered here,
through which over 2,500,000m? of water enters the area with the hydrograph and entry point
indicated in[/| A 10-hour period is simulated, allowing the water to continue spreading through
the computational domain.

The same hypothetical event is considered by |[Liang et al.| (2008)), Liang (2010}, and Vacon-
dio et al.| (2012). These studies used a 10m resolution grid of 360,000 cells, whereby build-
ings and vegetation were removed from LiDAR altimetry data to create a digital terrain model
(DTM). The software presented herein allows us to go further. Updated datasets were created us-
ing a 2007 survey, and the resulting DTM and elevation model with buildings included (DEM)
are shown in [/| at 2m resolution with 9,013,004 cells. As previously a uniform Manning co-
efficient of 0.035 is applied across the domain. Cells within and north of the River Thames
are excluded from computation. Transmissive boundary conditions are imposed at the domain
edges. The final volume error is <1% of the inflow volume for all Thamesmead simulations
discussed.

We start by attempting to reproduce the simulation previously explored in literature with a
10m DTM, in order to further validate the model. The inundation results are presented in [8]
where only minimal disagreement can be identified against the results in |Liang| (2010). This
stems from differences in treatment of inflow boundary conditions for the new software. It can
clearly be seen that a lesser flood extent is found with the new DTM in[9]for the same resolution.
The updated terrain model depicts a deeper network of canals and lakes, offering increased
storage.

Simulations were undertaken using both 32-bit and 64-bit floating-point arithmetic. Results
presented are for 64-bit unless otherwise indicated. Whilst the average error in depth introduced
by 32-bit arithmetic is small, the localised errors are in some cases unacceptably large. Errors

12
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(a) Digital terrain model (DTM) and inflow location (b) Digital elevation model with buildings included
for Thamesmead (DEM).
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(c¢) Volumetric discharge at the breach location.

Figure 7 Boundary conditions and topography used in Thamesmead simulations.
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Figure 8 Inundation results after a 10-hour period for the 10m resolution DTM used in Liang (2010).
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were more pronounced at 10m resolution with the DEM; the average error exceeded 0.1m and
the largest error was 0.98m. By contrast the average errors for all simulations at Sm and 2m
resolution were <0.01m. The magnitude of these errors is in part a function of the numerical
scheme employed, although it would not be entirely surprising if coarse resolutions are more
sensitive to numerical resolution given the larger volume affected by the same change in depth.
Further research is required.

The final extent and inundation depth for the three resolutions and two elevation models
employed are shown in[9] The building layout is unusual in Thamesmead, with numerous con-
nected networks of buildings. Small tunnels and alleyways allow for pedestrian access, and the
elevation models have been adjusted to ensure these are present as a flow pathway. These pas-
sages are small however, hence the buildings can be expected to reflect a large volume of the
flow impacting them; this is confirmed by the results obtained. Inclusion of buildings results
in an increased inundation in the west of the domain. Spatial resolution also has a substantial
impact on the flood extent. [0 shows the magnitude of the velocities after six hours, with the
highest velocities present at the highest resolutions where narrow gaps are clearly resolved, con-
centrating flow to alleyways and streets. As a consequence flood progression is more rapid at
higher resolutions. In this case, coarse resolutions may result in underestimation of flood extent.

Additional simulations were run for each grid resolution with different Manning’s n values
from 0.01 to 0.09 at 0.02 increments, giving 30 simulations in total. This allows the sensitivity
to parameterisation to be assessed. The minimum and maximum extent of flooding after 10
hours across the calibration range is shown in 9] As expected, a lower Manning’s n results
in a larger area of inundation by the end of the simulation. Consistent with the findings of
Yu and Lane| (2006), coarser grid resolutions exhibit lower sensitivity to Manning’s n, while
there is a substantial range in final extent for both the DEM and DTM at 2m resolution. This
is unsurprising given the higher localised velocities at fine grid resolutions. Low sensitivity
to parameterisation at coarse grid resolutions is not a justification for using these resolutions
however, as the difference in inundation from coarse to fine resolution grids far exceeds the
scope of influence any parameterisation might have. Consequently there is a clear need for sub-
grid scale representation of topographic features, dynamically adaptive grids, or use of high-
resolution grids throughout.

The high-velocity nature of this hypothetical event contributes to the higher sensitivity, in
contrast to studies exploring slow fluvial floodplain inundation by overtopping of defences rather
than breach. Fewtrell et al.| (2011)) demonstrate that floodplain sensitivity is significant in both
a LISFLOOD and ESTRY-TUFLOW simulations of the Carlisle 2005 flood, using a 25m grid.
However a more detailed representation of the in-channel flow dynamics using a high resolu-
tion grid and shock-capturing scheme throughout is shown to decrease floodplain sensitivity
to have very little effect with a 2m grid for the same event by Smith et al.| (2015)). Evidently
high-resolution simulations alone are insufficient for flood risk analyses in defence breach sit-
uations, requiring comprehensive exploration of inundation with different parameterisations to
fully assess the potential consequences for hypothetical and statistically-derived flood events.
At its most extreme, the use of coarse grids and a single Manning’s » in broad-scale flood risk
analysis could significantly underestimate the threat, as demonstrated by the marked differences
in results obtained herein.

14



Liang Q and Smith LS (2015)

180000 181000

179000

180000 181000

179000

180000 181000

179000

i

' iirele ; e — :
548000 547000 548000 549000

.

. <0.5m D 1.0m-15m . 2.0m-2.5m . 30m-35m § I Minimum extent
Lo

. 0.5m-1.0m D 1.5m-2.0m . 2.5m-3.0m I. | Maximum extent

Figure 9 Inundation results after a 10-hour period using DEM and DTM at different spatial resolutions,
and the minimum and maximum inundation extents with Manning values from 0.01 to 0.09.
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Figure 10 Magnitude of velocities at 6 hours using DEM and DTM at different spatial resolutions.

16



Liang Q and Smith LS (2015)

Table 2 Simulation run-times for Thamesmead in minutes using three different processing devices at
different resolutions and DEM or DTM.

Cell Spatial Floating-point CPU Intel GPU AMD  GPU NVIDIA

elevations  resolution  arithmetic Xeon E5-2609  FirePro V7800 Tesla M2075
(m) resolution

DTM 10 32-bit 10.53 0.73 0.83

64-bit 23.50 1.88 2.40

5 32-bit 47.20 2.78 3.25

64-bit 109.12 10.50 10.33

2 32-bit 636.72 40.43 40.20

64-bit >1,800.00 154.25 137.88

DEM 10 32-bit 10.57 0.77 0.85

64-bit 10.87 1.92 2.35

5 32-bit 50.55 3.03 3.45

64-bit 118.20 10.68 10.97

2 32-bit 675.18 40.73 40.20

64-bit >1,800.00 147.62 137.70

Total simulation times for a 10 hour period in Thamesmead with different processing devices
are given in [2] The software presented herein takes advantage of all four CPU cores made
available to it, giving a much more realistic comparison between the achievable performance of
GPU and CPU devices than comparisons against single-threaded code which may not have been
optimised. Multiple orders of magnitude speed-up should not be expected when comparing
against optimised code, based on vendor-quoted performance figures (Brodtkorb et al., [2012;
Smith and Liang, 2013); examination of device peak compute power in terms of floating point
operations per second (FLOPS) reaffirms that such dramatic levels of performance boost are
highly unlikely. The AMD device performs well in all of the simulations, only slightly slower
than the NVIDIA, but retailing at a much lower price. For large domains with millions of cells
it is possible to reduce simulation time to a fifteenth or less of the multi-core CPU equivalent for
the software presented herein.

5 Conclusions

We have presented a GPU-accelerated shallow flow model for urban flood modelling. Benefit-
ing from a shock-capturing capability as a result of implementing a first-order accurate finite-
volume Godunov-type scheme, the model is able to reproduce a wide range of complex flow
hydrodynamics including hydraulic jump-like transcritical flow with discontinuities. It is there-
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fore well-suited to urban flood modelling where local complex flow hydrodynamics may occur
due to flood waves interacting with complex structures and topographic features. The model also
ensures non-negative water depth through a reconstruction technique, thereby allowing robust
simulation of realistic flood events with wetting and drying without causing numerical instabil-
ity.

In the past, due to high computational expense, it has been challenging to apply such a so-
phisticated fully-2D model for high-resolution simulations across large spatial extents. With the
assistance of OpenCL and increased support for the standard by mainstream vendors, the pre-
sented modelling package enables simulations on a range of devices including multi-core CPUs
and GPUs, which allows us to leverage the benefits of heterogeneous computing. It has been ob-
served from the simulation results that significant speed-up is achievable even with inexpensive
desktop GPUs not designed for scientific use.

With this new GPU-accelerated modelling package, high-resolution flood modelling with
shock-capturing finite-volume schemes becomes feasible. The results for Thamesmead reveal
that high-resolution flood modelling predicts markedly different results to coarse resolutions,
justifying the need to comprehensively depict complex urban topographies. Preliminary work
has also been conducted to compare the use of 32- and 64-bit floating-point arithmetic. Using
32-bit arithmetic, significant errors in mass conservation occur and computational efficiency is
hindered by small time steps in the Glasgow test, occurring due to the extremely small water
depths following rainfall and domain wetting and drying. Therefore further research is required
to conclude whether 32-bit arithmetic is sufficiently accurate for flood simulations.
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